- 소개
- 구성원
- 학부
- 대학원
- 연구분야
- 게시판
데이터기반학습 Learning from Data
기계학습은 다양한 분야에서 점차 큰 관심을 받고 있으나, 막상 실제 데이터에 적용하여 성공적인 결과를 도출하는 데에는 많은 어려움이 따른다. 본 과목은 기계학습 기법들을 실제 문제에 적용할 때에 중요한 데이터 전처리, 피쳐 추출, 차원 축소, 클래스 불균형, 모델 앙상블 등의 주제들을 다루고, 데이터로부터 모형과 종속성을 학습하는 원리와 기법들을 소개하는 바, 특히 확률, 통계 및 최적화 이론에 기반하여 신경망 (Neural Networks), 서포트 벡터 머신 (Support Vector Machines), 은닉 마르코프 모형 (Hidden Markov Models) 및 강화 학습 (Reinforcement Learning) 기법들을 공부한다. 또한, 이들 기법을 활용하여, 다양한 시계열 데이터들을 대상으로 예측 및 분류 모델을 구현하는 프로젝트들과 데이터 기반 학습의 사례 연구들이 포함된다.